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Abstract

We present results on the latest advances in thermal infrared
face recognition, and its use in combination with visible
imagery. Previous research has shown high performance
under very controlled conditions, or questionable perfor-
mance under a wider range of conditions. This paper shows
results on the use of thermal infrared and visible imagery
for face recognition in operational scenarios. In particular,
we show performance statistics for outdoor face recogni-
tion and recognition across multiple sessions. Our results
support the conclusion that face recognition performance
with thermal infrared imagery is stable over multiple ses-
sions, and that fusion of modalities increases performance.
As measured by the number of images and number of sub-
jects, this is the largest ever reported study on thermal face
recognition.

1 Introduction

Over the last few years, there has been a surge of interest
in face recognition using thermal infrared imagery. While
the volume of literature on the subject is notably smaller
than related to visible face recognition, there is nonethe-
less a steady stream of research [1, 2, 3, 4, 5, 6]. Previous
work centered mostly on validating infrared imaging as a
viable tool for biometric identification. These studies relied
on databases limited both in size and variability, due to the
expense and complexity of extensive data collection. Early
results were based on gallery and probe sets collected in-
doors during a single session. In that respect, they resemble
thefa/fb tests in the FERET program [7].

Comparable performance for visible and thermal face
recognition was reported in [3], using a small database of
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imagery collected in a single session. Their thermal sen-
sor was a low-sensitivity, low-resolution ferro-electric sen-
sor. In [8, 1], superior performance of thermal imagery
is reported using a variety of algorithms. These studies
used a database of coregistered visible/thermal image pairs
of approximately90 subjects, collected indoors during a
single session. During data collection illumination condi-
tions were purposely varied in order to present a challenge
for visible face recognition. Results of a recent time-lapse
recognition experiment were reported in [4, 9]. This study
uses a database of240 subjects collected over a10 week pe-
riod. Recognition performance was evaluated using a PCA
algorithm for both visible and thermal images. The most in-
teresting conclusion of the study is that face recognition us-
ing thermal images degrades more sharply than with visible
images when probe and gallery are chosen from different
sessions. This has obvious negative implications for the use
of thermal imagery in face recognition, as any imaginable
application of face recognition would require enrollment
and testing images to be acquired at different times, and po-
tentially different locations. An additional conclusion of the
study in [4, 9] is that despite the degraded thermal recogni-
tion performance, fusion of both visible and thermal modal-
ities yields better overall performance.

The current paper sets out to expand the knowledge on
visible/thermal face recognition by extending the opera-
tional scenario to outdoor imaging. This is well known to
be a challenging condition for all existing face recognition
systems, and has been highlighted as a critical area of re-
search [10]. We will present results under realistic testing
conditions, with gallery and probe images acquired during
different sessions, as described in Section 2.

Additionally, we will expand the treatment of time-lapse
performance using thermal imagery given in [4, 9]. We will
show that while the results in [4, 9] are valid (and indeed re-
producible on our data), they are not necessarily a reflection
of the modality, but rather of the algorithm used to measure
the quality of that modality.
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Our study is the largest ever reported for thermal face
recognition, in terms of number of images and number of
subjects. In addition, this is the first ever study to consider
outdoor and indoor imaging conditions for thermal imag-
ing, and one of few to do so even for visible face recogni-
tion. Due to the operational realism of this study, our gov-
ernment sponsor has requested that limited information be
disseminated into the public domain as to specific details
of the experimental setup and its location. Therefore, most
discussion about experimental logistics will be restricted to
number of subjects and imaging conditions.

2 Data Collection and Preprocessing

The majority of the imagery used in this study was col-
lected during during eight separate day-long sessions span-
ning a two week period. A total of 385 subjects partici-
pated in the collection. Four of the sessions were held in-
doors in a room with no windows and carefully controlled
illumination. Subjects were imaged against a plain back-
ground some seven feet from the cameras, and illuminated
by a combination of overhead fluorescent lighting and two
photographic lights with umbrella-type diffusers positioned
symmetrically on both sides of the cameras and about six
feet up from the floor. Due to the intensity of the photo-
graphic lights, the contribution of the fluorescent overhead
lighting was small. Three of the four indoor sessions were
held in different rooms. The remaining four sessions were
held outdoors at two different locations. During the four
outdoor sessions, the weather included sun, partial clouds
and moderate rain. All illumination was natural; no lights or
reflectors were added. Subjects were always shaded by the
side of a building, but were imaged against an unconstrained
natural background which included moving vehicles, trees
and pedestrians. Even during periods of rain, subjects were
imaged outside and uncovered, in an earnest attempt to sim-
ulate true operational conditions. For each individual, the
earliest available video sequence in each modality is used
for gallery images and all subsequent sequences in future
sessions are used for probe images.

Figure 1: Example visible images of a subject from indoor
and outdoor sessions.

For all sessions, subjects were cooperative, standing
about seven feet from the cameras, and looking directly
at them when so requested. On half of the sessions (both
indoors and outdoors), subjects were asked to speak while
being imaged, in order to introduce some variation in facial
expression into the data. For each subject and session, a four
second video clip was collected at ten frames per second in
two simultaneous imaging modalities. We used a sensor ca-
pable of acquiring coregistered visible and longwave ther-
mal infrared (LWIR) video. The visible component has a
spatial resolution of640 × 480 pixels, and8 bits of spec-
tral resolution. The thermal sensor is uncooled, and has12
bits of depth, sensing between8µ and12µ at a resolution of
320 × 240 pixels.

Figure 2: Automatic detection of the face and eyes shown
on an overlay of visible and thermal images. (The lower
cross-hairs denotes the center of the face, not the nose)

Faces were automatically detected in all acquired indoor
and outdoor frames, using a system based on the algorithm
described in [11]. No operator intervention was required
for this step, the results of which are shown in Figure 2 on
an overlayed visible/thermal representation. The same fig-
ure shows the results of eye localization, which was also
performed automatically on every frame. Recall that since
visible and thermal images are coregistered, eye locations
in one modality give us those in the other. The detected
eye locations were used to affinely transform all images to
a standard grid of99× 132 pixels, with fixed eye locations,
with all necessary interpolation done bilinearly. Once geo-
metrically normalized, all images were masked to exclude
background. We should emphasize the fact that all data used
for the experiments below was processed in a completely
automatic fashion, once again in an attempt to simulate true
operational conditions.

Thermal images in this study were processed via
one-point calibration in order to compensate for non-
uniformities in the microbolometer array. This simply con-
sists of subtracting from each image pixel the response of
that pixel to a uniform source. More details on calibration
of thermal imaging sensors can be found in [8].



Figure 3: Original (left) and illumination compensated
(right) outdoor images.

Visible images were run through a simple procedure in
order to eliminate some of the most severe effects of out-
door illumination. Given the shape of human heads, self
shadowing of one side of the face during strong lighting
conditions is a major source of appearance variation. As
long as there is sufficient dynamic range in the image, this
problem can be attenuated through the following process.
We estimate the means and variances of the pixels on either
side of the face and use them in a simple criterion to deter-
mine the better illuminated side. We rescale the pixels on
the poorly illuminated side to the mean and standard devia-
tion of the good side. A sharp transition between both sides
of the processed face is avoided by combining them through
a weighted average near the centerline.

This simple technique is quite effective for compensat-
ing for common lateral self shadowing, as can be seen in
the results below, but does not help with shadowing of the
eye sockets from the superciliary arches, which is very com-
mon with strong overhead illumination from the sky or sun.
Also, overexposure from excessive illumination is some-
what common outdoors, where the dynamic range of light-
ing is considerably larger than indoors. In these cases,
we use another heuristic procedure which we have found
quite effective. We note that the skewness of the distri-
bution of grayvalues of an underexposed image is larger
than that of a well illuminated image, which is in turn

larger than that of an overexposed image. Also, note that
gamma-correction with an exponent larger than unity de-
creases skewness while the opposite is true for an exponent
below unity. Combining these two observations, we use a
gamma-correction step with an exponent dependent on the
skewness of the distribution of grayvalues on the face. Fig-
ure 3 shows the effect of this process for two outdoor visible
images. We see in Section 5, Figure 5, that this preprocess-
ing step has a favorable effect on both PCA- and LDA-based
recognition.1

3 Structure of the Experiments

We performed experiments with three different algorithms
in each of the two modalities: PCA with Mahalanobis angle
distance, LDA with angle distance and the (blinded for re-
view) algorithm. The first two are standard algorithms with
performance evaluations widely available in the literature,
including [2], in which the authors present a comprehen-
sive analysis of their performance on visible and thermal in-
frared imagery in a same-session recognition scenario. The
third one is a commercial algorithm made available for test-
ing in binary form.2

The training set for all algorithms was completely dis-
joint from gallery and probe images, in time, space and
subjects. That is, the training set was collected at an ear-
lier time, in a different location and used a disjoint set of
subjects. This insures that the results reported below are
indicative of real world performance. Since the data collec-
tion involved video data in both modalities, we evaluated
recognition performance using short video sequences as in-
put. Following the recent trend in evaluation of biometric
algorithms [12, 13], we performed randomized experiments
to estimate both mean recognition rates and confidence in-
tervals for all tests. Each test (regardless of modality or
algorithm) used a random sampling of three images from
the gallery sequence of each individual and four consecu-
tive frames from a random probe sequence of each indi-
vidual, with a random starting frame within the sequence.
The distance from a probe sequence to an individual in the
gallery was defined to be the smallest distance between any
frame in the sequence and any image of that individual in
the gallery. Classification was based on nearest neighbors
with respect to this distance. For each modality and algo-
rithm we performed one-hundred random repetitions of the
experiment, using the same sampling pattern for all algo-
rithms and modalities. We then computed the mean recog-
nition rate at each rank, from one to ten, along with the stan-
dard deviation of that measurement over the one-hundred

1Illumination preprocessing has no measurable effect on the remaining
algorithm.

2This algorithm was made available for testing purposes at
http://(blinded for review).



trials. All performance graphs below depict average perfor-
mance over the whole trial, with error bars corresponding
to 95% confidence intervals (or equivalenly,1.96 standard
deviations).

We report results for fusion of visible and thermal im-
agery for all algorithms and modalities. Following [9], we
assign a score to a visible-thermal image pair that is the
sum of the scores of each image in the pair. This addition is
done with equal weights. When we report results for fusion
below, we refer to the performance resulting from using a
nearest neighbor classifier on the sum of scores.

4 Thermal Infrared Phenomenology

While the nature of face imagery in the visible domain is
well-studied, particularly with respect to illumination de-
pendence [14], its thermal counterpart has received less at-
tention. In [4], the authors show some variability in thermal
emission patterns during time-lapse experiments, and prop-
erly blame it for decreased recognition performance. Fig-
ure 4 shows comparable variability within our data. The
left column shows enrollment images and the right column
shows test images from the same subject at a later ses-
sion. We can plainly see how emission patterns are differ-
ent around the nose, mouth and eyes. Weather conditions
during our data collection were quite variable, with some
days being substantially colder and windier than others. In
addition, some subjects were imaged indoors immediately
after coming from outside, while others had as much as
twenty minutes of waiting time indoors before being im-
aged. These conditions contribute to a fair amount of vari-
ability in the thermal appearance of the face. When exposed
to cold or wind, capillary vessels at the surface of the skin
contract, reducing the effective blood flow and thereby the
surface temperature of the face. When a subject transitions
from a cold outdoor environment to a warm indoor one, a
reverse process occurs, whereby capillaries dilate, suddenly
flushing the skin with warm blood in the body’s effort to
regain normal temperature.

Additional fluctuations in thermal appearance are unre-
lated to ambient conditions, but are rather related to the
subject’s metabolism. During our data collection, an un-
controlled portion of the subjects engaged in strong phys-
ical activity at different periods prior to imaging. The
time elapsed from physical exertion to imaging was un-
controlled and known to be different for different sessions.
This further contributes to the change in thermal appear-
ance. Also, high temporal frequency thermal variation is
associated with breathing. The nose or mouth will appear
cooler as the subject is inhaling and warmer as he or she ex-
hales, since exhaled air is at core body temperature, which
is several degrees warmer than skin temperature.

Figure 4: Variation in facial thermal emission from two sub-
jects in different sessions. Left column is the enrollment
image and right column is the test image.

Much like recognition from visible imagery is affected
by illumination, recognition with thermal imagery is af-
fected by a number of exogenous and endogenous factors.
And while the appearance of some features may change,
their underlying shape remains the same and continues to
hold useful information for recognition. Thus, much like in
the case of visible imagery, different algorithms are more
or less sensitive to image variations. As we see in Figure
5, for example, proper compensation for illumination prior
to recognition has a favorable effect on recognition perfor-
mance with visible imagery. Clearly, the better algorithms
for thermal face recognition will perform equivalent com-
pensation on the infrared imagery prior to comparing probe
and gallery samples.

5 Experimental Results and Discus-
sion

We performed all experiments as described in Section 3.
Enrollment images for all experiments were taken from in-
door sessions since this is the most likely scenario for an
access control system: users are enrolled in an office at the
same time that they are issued their identification cards, and
they later seek access at a different location, either indoors
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Figure 5: Cumulative recognition rates for all algorithms and conditions. Left: visible imagery without illumination com-
pensation. Center: visible imagery with illumination compensation. Right: LWIR imagery.
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Figure 6: Recognition results by algorithm for indoor enrollment and indoor testing. Note that the vertical scales are different
in each graph. Left: PCA with illumination compensation. Center: LDA with illumination compensation. Right: (blinded
for review) algorithm

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10

C
or

re
ct

 Id
en

tif
ic

at
io

n

Rank

PCA IC Visible Outdoor
PCA LWIR Outdoor
PCA Fusion Outdoor

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  2  4  6  8  10

C
or

re
ct

 Id
en

tif
ic

at
io

n

Rank

LDA IC Visible Outdoor
LDA LWIR Outdoor
LDA Fusion Outdoor

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  2  4  6  8  10

C
or

re
ct

 Id
en

tif
ic

at
io

n

Rank

(blinded for review) Visible Outdoor
(blinded for review) LWIR Outdoor
(blinded for review) Fusion Indoor

Figure 7: Recognition results by algorithm for indoor enrollment and outdoor testing. Note that the vertical scales are
different in each graph. Left: PCA with illumination compensation. Center: LDA with illumination compensation. Right:
(blinded for review) algorithm



or outdoors. Two sets of experiments are presented, those
with test imagery acquired indoors and outdoors. The ones
with outdoor test imagery are easily representative of an ac-
cess control point situated at the entrance of a building or
at a roadside checkpoint. Indoor test images were acquired
with very structured illumination, and are therefore easier
(at least for the visible half) than should be expected for an
indoor access control point.

A summary of top-match recognition performance is
shown in Tables 1 and 2. A quick glance yields some pre-
liminary observations. Under controlled indoor conditions,
two of the visible algorithms are probably showing satu-
rated performance on the data, which indicates that the test
is too easy according to [15]. This may also be the case for
the best thermal algorithm. Across the board, for both in-
door and outdoor conditions, fusion of both modalities im-
proves performance over either one separately. Comparing
indoor versus outdoor performance shows that the latter is
considerably lower with visible imagery, and significantly
so even with thermal imagery. Fusion of both modalities
improves the situation, but performance outdoors is sta-
tistically significantly lower than indoors, even for fusion.
This difference, however, is much more pronounced for the
lower performing algorithms, which is simply a reflection of
the fact that the better algorithms have superior performance
with more difficult data, without sacrificing performance on
the easy cases.

Figure 5(left) shows the marked improvement that illu-
mination compensation, as described in Section 2 has on
visible recognition performance. We additionally experi-
mented with the symmetric shape-from-shading method in
[16] and found that our simple preprocessing yielded better
results. Since the improvement is so large, all results below
for visible imagery include illumination compensation. In
Figure 5(center) we see a side-by-side comparison of visi-
ble recognition performance for all algorithms under indoor
and outdoor conditions. In this case, the ordering of the al-
gorithms in terms of performance is the same indoors and
outdoors, with all outdoor results underperforming all in-
doors results. This clearly indicates that even when attempt-
ing to compensate for severe outdoor illumination, the vari-
ability induced by imaging conditions overpowers intrap-
ersonal similarity. For indoor imagery with carefully con-
trolled illumination, the top two algorithms are extremely
close, and both of them have very good performance. For
outdoor conditions, all algorithms are statistically different,
but even the best performer only reaches67% top-match
recognition.

Results for all algorithms using thermal infrared imagery
are shown in Figure 5(right). It is interesting to note that in
this case the results are ordered by algorithm, rather than
imaging conditions, and all differences in top-match recog-
nition performance are statistically significant. This pre-

Vis LWIR Fusion
PCA 81.54 58.89 87.87
LDA 94.98 73.92 97.36
(blinded for review) 97.05 93.93 98.40

Table 1: Top-match recognition results for indoor probes

Vis LWIR Fusion
PCA 22.18 44.29 52.56
LDA 54.91 65.30 82.53
(blinded for review) 67.06 83.02 89.02

Table 2: Top-match recognition results for outdoor probes

sumably indicates that the variation induced by the imag-
ing conditions is smaller than in the visible case. Perfor-
mance results for indoor recognition experiments by algo-
rithm are shown in Figure 6. Note how performance with
visible imagery is relatively close among algorithms, which
is not surprising since the imagery is very carefully con-
trolled. More interestingly, we see that while the differ-
ence in performance between visible and thermal imagery
is very significant for PCA and LDA at top-match and re-
mains so for the top ten, it is barely statistically significant
at top-match when using the (blinded for review) algorithm,
and that significance vanishes by the third rank. This indi-
cates that this algorithm compensates for some sources of
intrapersonal variability which the other two do not. Also,
this raises the issue of how to evaluate the usefulness of an
imaging modality for a specific task, in this case face recog-
nition. If we look at the results using PCA, as in [4, 9], we
would rightly conclude that there is a severe loss of per-
formance associated with the use of thermal imagery with
respect to visible imagery, at least when the illumination is
carefully controlled. However, we see that if we measure
performance using another algorithm, that loss of perfor-
mance may be much smaller, or even vanish. Therefore,
we must keep in mind that when we judge the value of an
imaging modality for a given task, we must try to separate
algorithmic effects from intrinsic value. This is not easily
done, however, since we can only measure the value of the
outcome, and not the modality itself.

Looking at the results from the outdoor experiments in
Figure 7, we see clear indication of the difficulty of out-
door face recognition with visible imagery. All algorithms
have a difficult time in this test, and even the best performer
achieves only about84% recognition at rank10. Thermal
performance is also lower for all methods than with indoor
imagery, but not so much as in the visible case. However, in
this case the performance difference between the modalities
is very significant for all three algorithms. It is clear from



this experiment, as from those in [10] that face recognition
outdoors with visible imagery is far less accurate than when
performed under fairly controlled indoor conditions. For
outdoor use, thermal imaging provides us with a consider-
able performance boost.

Fusion of both imaging modalities improves perfor-
mance under all tests and algorithms, even when using the
simple combination rule described in Section 3. This sup-
ports previous results reported in [2, 4]. As we mentioned
above, it is interesting to note that while even for the best
performing algorithm there is a statistically significant dif-
ference between fusion performance outdoors and indoors,
that significance is smaller the better the algorithm. This is
a reflection of the fact that all methods perform well with
easy data, but only the better methods perform well in diffi-
cult conditions.

6 Conclusion

We presented visible and thermal face recognition results in
an operational scenario including both indoor and outdoor
settings. Our study is the first ever to consider outdoor and
indoor imaging conditions for thermal imaging, and one of
few to do so even for visible face recognition. With im-
ages of 385 subjects collected over a two-week period, it is
also the largest ever reported for thermal face recognition in
terms of number of images and number of subjects.

Every effort was made to produce a study that would
properly reflect the performance of face recognition tech-
nology, both visible and thermal, in a real-world applica-
tion. To that effect, the training set used for all algorithms
was collected at an earlier time, in a different location and
used a disjoint set of subjects. Additionally, and unlike most
published results, all feature detection and image normal-
ization was done automatically, without manual interven-
tion. This included detection of the face itself and of the
facial landmarks necessary for geometric alignment. As a
result, our recognition rates are likely to be representative of
expected field outcomes. The statistical significance of our
analysis is based on our randomized approach to selecting
gallery and probe images for experiments with three dif-
ferent algorithms in each of the two modalities: PCA with
Mahalanobis angle distance, LDA with angle distance and
the (blinded for review) algorithm.

While the visible imagery was affected by changes in
illumination outdoors, thermal imagery was affected both
indoors and outdoors by a number of factors such as physi-
cal exertion of subjects and weather conditions, resulting in
better performance obtained with visible imagery indoors
under controlled lighting conditions. However, the perfor-
mance difference between modalities varies depending on
the algorithm. This leads us to remark that while evaluating
the suitability of an imaging modality for a specific task by

comparing outcomes of a given algorithm is a reasonable
surrogate, we must realize that we are measuring the joint
value of the algorithm and the modality. It is difficult to
decouple the two effects, but at the very least we must be
aware of the connection. This was particularly relevant for
our study, where we noticed that while multi-session ther-
mal face recognition under controlled indoor illumination
was statistically poorer than visible recognition with two
standard algorithms, significance was substantially reduced
with an algorithm more specifically tuned to thermal im-
agery. This suggests that previous results reported on multi-
session thermal face recognition may be incomplete.

Outdoor recognition performance is worse for both
modalities, with a sharper degradation for visible imagery
regardless of algorithm. It is clear from our experiments that
face recognition outdoors with visible imagery is far less ac-
curate than when performed under fairly controlled indoor
conditions. For outdoor use, thermal imaging provides us
with a considerable performance boost. Thermal recogni-
tion performance suffers a moderate decay when performed
outside against an indoor enrollment set, probably as a re-
sult of environmental changes. As previously reported, fu-
sion of both imaging modalities improves performance un-
der all tests and algorithms, even when using a simple com-
bination rule. This improvement is particularly relevant out-
doors, where performance of each individual modality is
impaired. In fact, fused performance outdoors is nearing
the levels of indoor face recognition, making it an attractive
option for human identification in unconstrained environ-
ments.
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